

LIFE 14CCM/BE/001187 LIFE DAIRYCLIM

Feeding strategies to decrease methane emissions and carbon footprint of dairy cows in Belgium, Luxembourg and Denmark

isabelle.dufrasne@ulg.ac.be - flessire@ulg.ac.be - catherine.scohier@uliege.be

DAIRYCLIM C. Actions

- C.1: Survey on grasslands loss and proportion of grazed areas
- C.2: Defining at the experimental farm best feeding strategies for dairy cows to mitigate CF and GHG emissions
- C.3: Development of precision grazing methods at the experimental farm
- C.4: Follow-up and application of best feeding strategies and precision grazing in the experimental and pilot farms
- D.1: LCA
- D.2: Monitoring
- E: Dissemination
- F: Management

Responsible beneficiary: Convis (Lu)

- Foreseen start date: 1/12/2015
- Actual end date: 1/04/2019

Actual start date: 1/12/2015 Foreseen end date: 1/04/2019

Objectives

- grasslands loss : proportion to be estimated by collection of official figures
- grazing proportion and grazing practices: info's collected via a survey
- Report => policymakers and stakeholders
- Increasing awareness about this topic
- A second survey will be organised at the end of project => objectivizing changes – progresses
- Target: 20% answer rate

* *Life* * * * *

Problems encountered

Collection of data

- Delay to receive updated official figures (2015)
- Low answer rate in LU => questionnaires were allotted to the CONVIS advisors => answer rate of 14.4%
- Some forms were deleted due to obvious mistakes and/or answers to a very limited part of the questions.

Country	Sent	Filled	Used	Answer
Country	forms	forms	forms	rate
Wallonia	3152	1016	1004	32,2 %
Denmark	2550	386	375	15,1 %
Luxembourg	430	62	60	14,4 %
Total	6132	1464	1439	23,9 %

Question 8: Answers difficult to provide: productivity - fertilizer

Report

- In the proposal, each country => treatment –Stat on its own dataset
- Report based on the compilation of 3 national reports
- Report delivered with the progress report

After suggestions from EU:

- Another approach: compilation of the datasets from each country
- Statistical analysis as a whole
- New report provided with the Mid term Report

C.1: Survey on grasslands loss and proportion of grazed areas

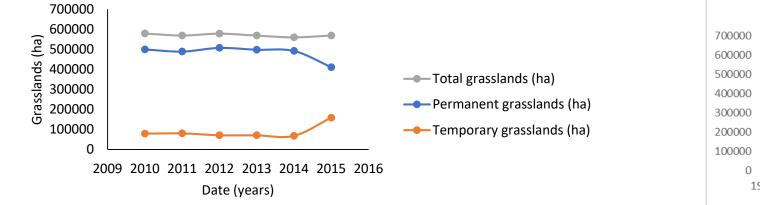


Figure 1. Evolution of surfaces devoted to grassland in Belgium

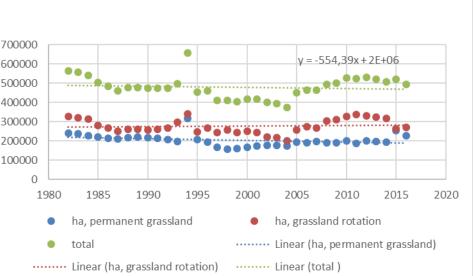


Figure 2. Evolution of surfaces devoted to grassland in Denmark.

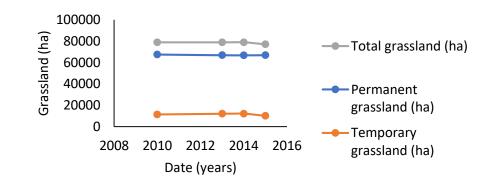
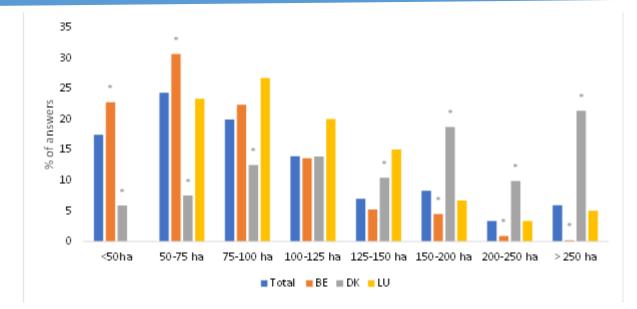



Figure 3. Evolution of surfaces devoted to grassland in Luxembourg

C.1: Survey on grasslands loss and proportion of grazed areas

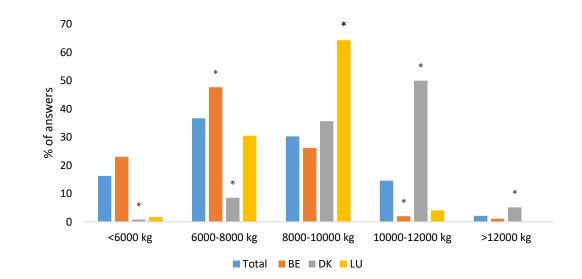
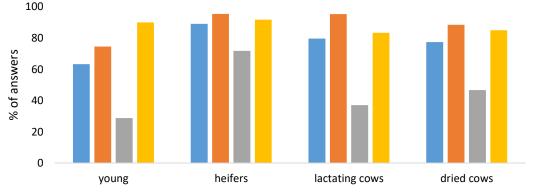



Figure 8. Average annual milk yield per cow and per farm in each country and comparison with the compiled dataset. Statistical differences (p<0,05) are highlighted with an "*". BE is Belgium. DK is Denmark. LU is Luxembourg.

Figure 6. Surfaces of the dairy farms from each country and comparison with the compiled dataset. Statistical differences (p<0,05) are highlighted by "*". BE is Belgium. DK is Denmark. LU is Luxembourg.

Figure 9. Dairy cattle having access to pastures: percentage of each category in the compiled dataset and in each country. BE is Belgium. DK is Denmark. LU is Luxembourg.

Future of grazing

- Farmers were asked about their perspectives regarding grazing:
- 86 % => expect keeping or increasing grazing practices.
- 10% => would decrease grazing and 4% thought they would stop it.
- 13% => no opinion

2^d Survey

Questionnaire

- Ask contact number?
- Help to fill in?
- Direct contact to fill in? e.g discuss about the survey at agricultural events

LIFE C.1: Survey on grasslands loss and proportion DAIRYCLIM of grazed areas

• Deadlines

Date	Note
	Sending of the first inquiry on grassland loos and grazed
11/15	proportion
01/16	Cloture of the first inquiry period
04/16	Grassland loss and grazed proportion in Luxembourg, Denmark and Belgium in 2015: Report
10/18	Sending of the second inquiry on grassland loss and grazed proportion
01/19	Cloture of the second inquiry period
04/19	Grassland loss and grazed proportion in Luxembourg, Denmark and Belgium in 2018

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

	Oct 2015	April 2016	August 2016	Transition	January 2017	May 2017	August 2017
Site	Experimental farm – Sart Timan			Experimental farm – Sart Timan => CTA Strée	CTA-Strée		
	Winter		Summer		Winter		Summer
	Test 1		Test 2		Test 3		Test 4
	Compound rich in Starch	Compound rich in Fat	Different amounts of concentrates vs grazing		Compound rich in Fat Extruded Linseed (ELS)	Compound rich in Fat Extruded Canola seed (CS)	Dry ration vs grazing

2015-2016

- Latin square design: cows fed with the control feed produced more milk than those with the test feed => mixing of the groups during test 2
- More delay needed for rumen adaptation
- Concentrate rich in fat: problems in distribution
- Methane calculations (Pr Nicolay)
- Reduction of methane emissions

Delays due to all these problems => increased DIM in the herd

Lower milk yield => less concentrate fed

=> lower methane decrease than expected

2015-2016

Grazing season

Poor meteorological conditions => muddy pathways + low grass growth

Increase mastitis rate => culling of some cows – early drying off of some others

- \Rightarrow Important decrease in herd size
- \Rightarrow We proposed to change from experimental site

2016-2017

CTA- Strée

Analysis of problems encountered:

- 1. Still using a compound rich in fat (ELS vs CS)
- 2. Waiting for beginning the trials to get well balanced groups
- 3. Increasing the proportion concentrate vs forage => %Fat >>>
- 4. Switching from ELS to CS : no need for increasing the transition period

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

Problems encountered

- 2016-2017
- **CTA- Strée**

Technical difficulties to adapt the Guardian[®] in the barn

2016-2017 Summer season

Trials lasted for 2 months with comparison of dry ration vs grazing

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

Composition (kgDM)	Total mixed ration Trial 1	Total mixed ration Trial 2
Grass silage	5,4	6,6
Maize silage	6,4	7,1
Sugar beet pulp	2,6	3,4
Cereal crop silage	2,7	-
Compound feed*rich in protein	2,3	1,8
Salt - minerals	0,1	0,1
Total	19,6 kg	19,1 kg
Milk yield allowed	20,6 kg	20,6 kg

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

Composition of tested compounds

g/kgDM	Control	ELS	CS
DM	889	883	888
VEM	942	1180	1179
СР	238	232	229
DVE	135	148	143
OEB	22	8	11
Starch	157	229	237
Sugars	62	45	45
Fat	41	113	112
Cellulosis	155	86	92
NDF	364	267	243
ADF	197	130	130

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

Composition	Trial	Trial ELS		I CS
g/kgDM	TMR +Control (Control feed)	TMR + ELS (rich in fat)	TMR +Control (Control feed)	TMR +CS (rich in fat)
DM	360	360	360	360
VEM	910	950	930	970
СР	158	158	149	148
DVE	84	85	84	85
OEB	6	3	-3	-5
Starch	139	151	142	157
Sugars	38	35	37	34
Fat	36	48	34	47
NDF	410	391	413	392
Concentrate feeding (kg/cow/d)	5,0	4,6	5,0	4,8

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

Results

2016-2017

CTA- Strée

- A drop by 5% of methane/cow/d in ELS
- A drop by 11% of methane/kgmilk in ELS
- A drop by 7% methane/kg milk in CS
- Unit: /kg milk?
- ✓ foreseen in the proposal
- different methods exist for calculationg ECM
- important Standard error between animals : Fat globules very difficult to manipulate – important variations from milking to milking and from day to day
 It seems us more clear to speak about /kg milk

To be highlighted:

- The TMR included 74% of forages = real situation of commercial farms
- Decreasing rate slightly lower with CS
- Choice of CS or ELS to be discussed regarding the CF production costs
- High N efficiency of the rations

LIFE C.2: Defining at the experimental farm best feeding DAIRYCLIM strategies for dairy cows to mitigate CF and GHG emissions

Milestones

Date	
10/15	Choice of winter diet 2015-2016
03/16	Test 1 –concentrate rich in starch – concentrate rich in saturated fat (Linseed)
04/16	Choice of summer diet 2016 – Test 2
05/16	Results report of the feeding test Test1 => Progress report
09/16	Choice of winter diet 2016 – Test 3 – concentrate rich in fat (Linseed vs canolaseed)
09/16	Test winter diet 2016 -2017 – Test 3
10/16	Results report of the summer diet – Test 2
04/17	Choice of diet 4 – Test 4
03/17	Test 3
05/17	Results report of the feeding test 3 => Mid term report
09/17	Test 4
09/17	Results report of the feeding test 4 => collection of results
10/17	Final report of the feeding tests => under redaction

Deliverable	Deadline	Status, remarks
C2 report Feeding trials Test 1	5/2016	Delivered
C2 report Feeding trial Test 2	10/2016	Delivered
C2 report Feeding trial Test 3	05/2017	Delivered – included in Mid Term
C2 report Feeding trial Test 4	09/2017	Under redaction
C2 report of the feeding tests	10/2017	

Responsible beneficiary: ULg

- Foreseen start date: 1/5/2016
- Foreseen end date: 30/9/2017

Actual start date: 22/4/2016 Actual end date: 30/9/2017

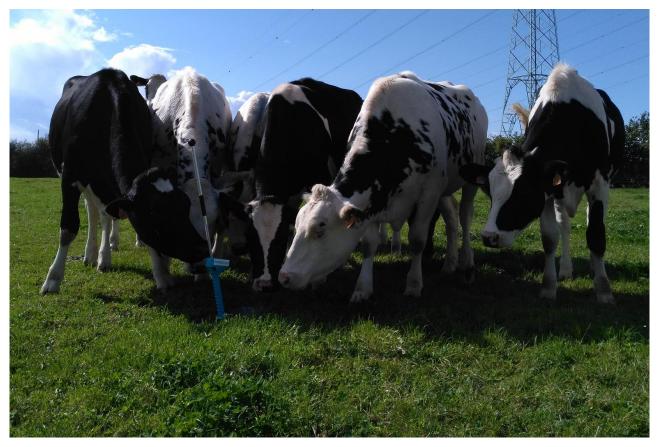
DAIRYCLIM C.3 Development of precision grazing methods

• Milestones

Milestones		
Beginning of the first test at grazing	05/2016	ОК
End of the first test at grazing	09/2016	31/08/2016
Beginning of the second test at grazing	05/2017	ОК
End of the second test at grazing	09/2017	30/9/2017
Beginning of the third test at grazing	05/2018	
End of the third test at grazing	09/2018	

Deliverables

Deliverable	Deadline	Status, remarks
C3 report of the first grazing test	10/2016	Delivered
C3 report of the second grazing test	10/2017	About to be finalised


Problems encountered and solutions

- Difficulties for obtaining the Grasshopper[®]
- => in 2016:
- measurements of grass height were made by the rise plate meter Jenquip[®] - specific file "Observatoire de l'Herbe", already used in the EU project Autograssmilk.
- \Rightarrow in 2017:
- Measurements with the EC20 specific file "Observatoire de l'Herbe"

DAIRYCLIM C.3 Development of precision grazing methods

LIFE C.4 Follow-up and application of best feeding strategies DAIRYCLIMand precision grazing on the experimental and pilot farms

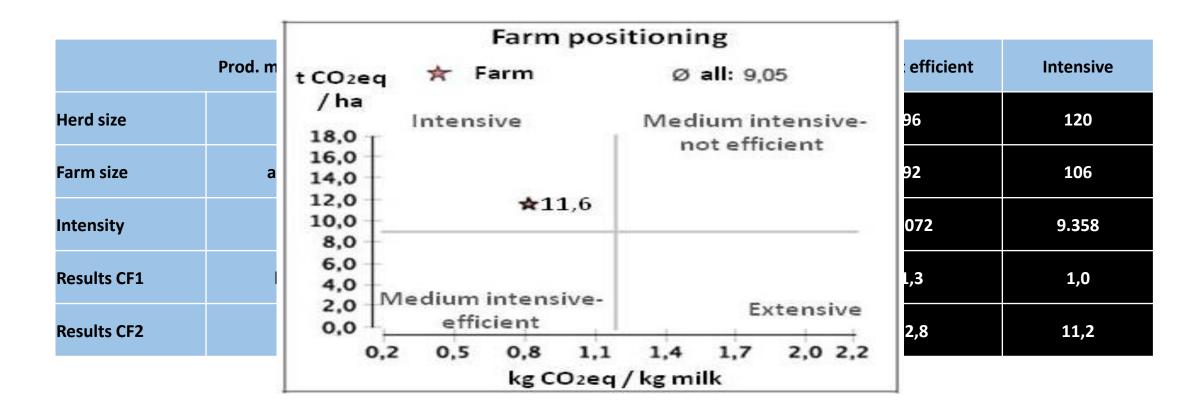
Beneficiary responsible for this action: Convis

Foreseen start date: 1/6/2016 Foreseen end date: 19/8/2019 Actual start date: 30/6/2016 Actual end date: 19/8/2019

LIFE C.4 Follow-up and application of best feeding strategies DAIRYCLIMand precision grazing on the experimental and pilot farms

2.5		*	
	1		
* /	IKE	2 *	
*-	-0	*	
		*	
	* 4	*_ <i>Life</i>	*** **

Deliverable	Deadline	Status, remarks
Report on characterization of pilot farms	10/2017	Running
Satisfaction questionnaire in pilot farms	12/2017	
Final statisfaction questionnaire	3/2019	
Report on best feeding strategies, precision	8/2019	
grazing, CF		
Milestones		
Agreements with pilot farms	3/2016	ОК
Observation phase in pilot farms	06/2016	ОК
Beginning of implementation of best feeding	10/2017	In preparation
strategies in pilot farms		
End of implementation period	7/2019	


Beneficiary responsible for implementation: CONVIS

- Choice of pilot farms in Luxembourg, Wallonia and Denmark
- Harmonization of data collection for calculating carbon footprint with Danish and Luxembourgish methods

LIFE Choice of pilot farms [12 farms, 4 for each country]

A) Luxembourg

LIFE Choice of pilot farms [12 farms, 4 for each country]

B) Denmark

Prod. method		Conventional	Conventional	Conventional	Organic
Herd size	cows	325	340	120	200
Farm size	agricultural area - ha	325	250	125	300
Intensity	kg ECM/ha	13.000	16.592	11.520	7.333
Results CF1	kg CO2 per kg ECM	0,94	1,04	1,00	1,03
Results CF2	t CO2 per ha	12,2	17,3	11,5	7,6

LIFE CHAIRY CLIMChoice of pilot farms [12 farms, 4 for each country]

C) Belgium

Prod. method		Conventional	Conventional	Conventional	Conventional
Herd size	cows	121	65	102	75
Farm size	agricultural area - ha	95,6	110	81,5	84
Intensity	kg ECM/ha	11.056	5.420	8.813	7.553
Results CF1	kg CO2 per kg ECM	n.y.a.	n.y.a.	n.y.a.	n.y.a.
Results CF2	t CO2 per ha	n.y.a.	n.y.a.	n.y.a.	n.y.a.

LIFE CHAIRY CLIM Choice of pilot farms [12 farms, 4 for each country]

Common criteria for farm choice:

- willingness to collaborate
- interest to participate in demonstration and development activities
- interest in environmental topics

DAIRYCLIM Harmonization of data collection [Surfaces]

Crops	Info	Total surface (ha)	Feed surfaces (ha)	Surfaces for biogas (ha)	Cash crops (ha)	Yeald (dt/ha)
Oat						
S-Wheat						
W-Wheat		20			20	70
Spelt						
Corn						
Braley for brewery						
S-Barley						
W-Barley		10	10			60
Rye						
Triticale						
Rape		25			25	40
Sunflower						
Peas						
Faba beans		10	5		5	30
Potatos						
Sugar beets						
Forage beets						
Mais silage		20	10		10	
Alfa alfa, clover, gras-clover						
Permanent grasland		60	40	10	10	
Temporary grasland						
Gras for seed production						
Others (specify)						
Set a side						

LIFE DAIRY CLIM Harmonization of data collection [Animals]

Kategorie	Code	Number	Months in stable	% slurry	% FYM
Young animals fem. <6 months	821001	24	12		100
Young animals fem. >6 months; <1 year	821002	23	8		100
Young animals fem. 1-2 years	821003	37	6	100	
Young animals fem. >2 years (heifers)	821004	4	6	100	
Fattening haifers	821005				
Dairy cows	821006	80	12	100	
Fattening cows	821007				
Breeding bull	821010				
Calfs males <6months	821011	13	12	100	

LIFE Harmonization of data collection[Inputs to the cultures]

Crops	Oat	S-Wheat	W-Wheat	Spelt	Corn	Braley for brewery	S-Barley	W-Barley	Rye	Triticale	Rape	Sunflower	Peas	Faba beans	Potatos	Sugar beets	Forage beets	Mais silage	Alfa alfa, clover, gras-clover	Permanent grasland	Temporary grasland	Gras for seed production	Others (specify)	
Pesticides																								
Herbicides																								I (kg)
Total herbicides																								I (kg)
Fungicides																								l (kg)
Regulators																								I (kg)
Insecticides																								I (kg)
Molluscicides																								I (kg)
Pesticides for seeds																								I (kg)
Other pesticides																								I (kg)
Seeds																								
Cereals																								dt
Mais																								dt
Fine seeds (grasses, clover)																								dt
Fine seeds (rape)																								dt
Sunflower																								dt
Peas, beans																								dt
Potatos																								dt
Beets																								dt
Fertilizers (without mineral f	iertilize	r with o	nly nitro	gen)																				
Superphosphate 45																								dt
Superphosphate 18																								dt
Thomasphosphate																								dt
Superphosphate triple																								dt
Kainit																								dt
Kalisalz 40																								dt
Kalisalz 60																								dt
Patent Kali																								dt
Kalisalz 50																								dt
MAP 11/52/0																								dt
NP 17/7																								dt
NP 18/46																								dt
NP 20/20																								dt

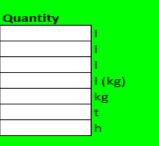
Harmonization of data collection [Other inputs]

Mineral nitrogen fertilizers

Ammonium nitrate 20%+5%MgO Ammonium nitrate 27% Ammonium nitrate 33% Ammonium nitrate 22% Ammonium nitrosulfate 26% Urea Ammonium sulphate 21% AHL 30% Calcium nitrate

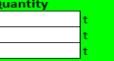
Energies, other production means

Fuel (Diesel) Fuel (heating) Fuel (Diesel) for biogas Oils, fats Plastic for silage Mill and mix grain Tractor h (80-100PS)

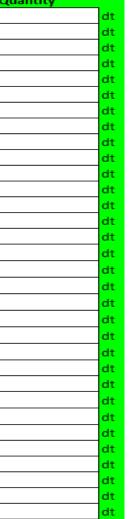

Purchase of animals

Young animals fem. <6 months Young animals fem. >6 months; <1 year Young animals fem. 1-2 years Young animals fem. >2 years (heifers) Fattening haifers Dairy cows Fattening cows M-Fresser M-Mastbullen Breeding bull Calfs males <6months

Corferments for biogas


Specify
Specify
Specify

Quantity	Quant. on mais
	d
	d
	d
	d
	d
	d
	d
	d
	d



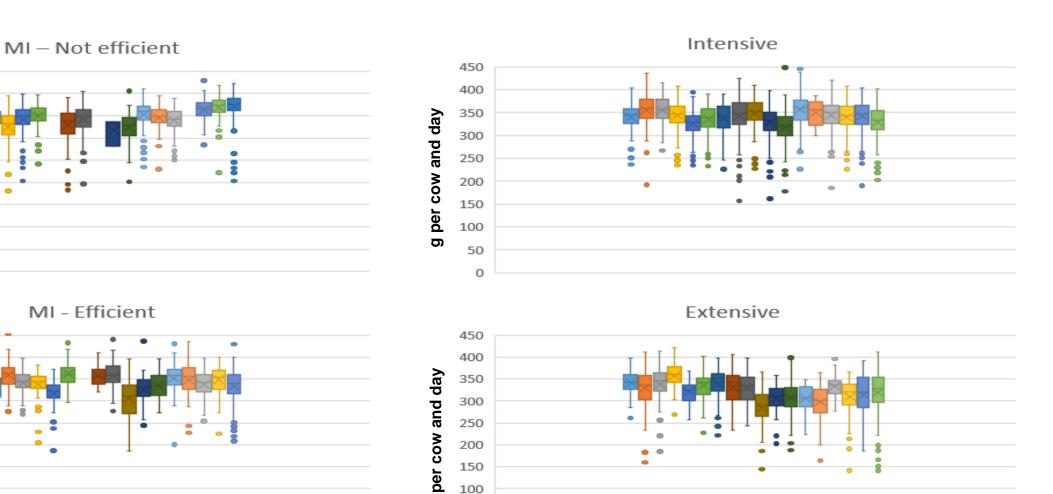
Number	weight	_
		dt

Quantity

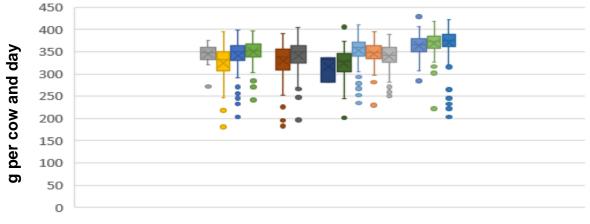
Electricity, Water, medicaments	Quanti
Electricity	
Water	
Medicaments for animals	
Feeds and straw	o
Calf muesli	Quanti
Concentrate 12 % meal	
Concentrate 12 % pellets	
Concentrate 13% meal	
Concentrate 13% pellets	
Concentrate 14 % meal	
Concentrate 14 % pellets	
Concentrate 15% meal	
Concentrate 15% pellets	
Concentrate 16% meal	
Concentrate 16% pellets	
Concentrate 17% meal	
Concentrate 17% pellets	
Concentrate 18% meal	
Concentrate 18% pellets	
Concentrate 19,5% meal	
Concentrate 19,5% pellets	
Concentrate 20% meal	
Concentrate 20% pellets	
Concentrate 21% meal	
Concentrate 21% pellets	
Concentrate 22% meal	
Concentrate 22% pellets	
Concentrate 23 % meal	
Concentrate 23 % pellets	
Concentrate 25% meal	
Concentrate 25% pellets	
Protein concentrate 30% meal	
Protein concentrate 30% pellets	
Protein concentrate 35% meal	
Protein concentrate 35% pellets	
Protein concentrate 40% pellets	

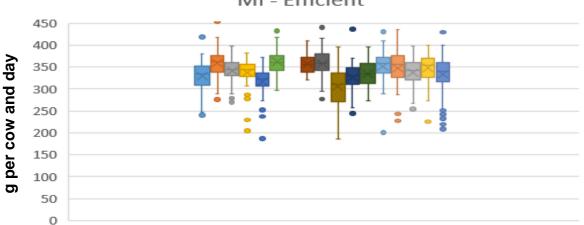
mЗ

LIFE Harmonization of data collection[Products / Output]


Categories	Products	Units	Weight	_
Renewable energies	Fuel (l) - [heat from biogas]			1
Renewable energies	Electgricity from biogas			kWh
Animals	Young animals fem. <6 months			dt
Animals	Young animals fem. >6 months; <1 year			dt
Animals	Young animals fem. 1-2 years			dt
Animals	Young animals fem. >2 years (heifers)			dt
Animals	Fattening haifers			dt
Animals	Dairy cows			dt
Animals	Fattening cows			dt
Animals	Breeding bull			dt
Animals	Calfs males <6months			dt
Animals	Death calfs			dt
Animals	Death adult animias			dt
Milk and eggs	Milk (dairy cow) (4.00/3.45)			dt
Organic manures	Biogasslurry			m3
Organic manures	Cattle-slurry			m3
Mashine work outside	Tractor h (80-100PS)			ha
Mashine work outside	Tractor h (101-125PS)			ha
Mashine work outside	Tractor h (126-150PS)			ha

LIFE Harmonization of data collection[Soil organic matter]




Data needed f	or calcu	lati	ng humus balance of	arable land						
Cover crops	ning straw and into the soil	Spreading or	<u> </u>		the farm on d and mais s		e land surfaces			
		- 1			Manure	Arable lar	nd	Mais		Dry matter
Austard / Rape	20	ha			FYM	216.5	t	100	t	
yegras	0	ha	Cereals	22 ha	Cattle slurry	0	m3	0	m3	8
lfa-alfa, clover	0	ha	Rapes	25 ha	Porc slurry	0	m3	0	m3	0
iras-clover	0	ha	Peas / Faba beans	32 ha	Biogas slurry	1000		500		7
Others	0	ha	Cover crops	20 ha	Diogas siurry	1000		500		

AIRYCLIM Methane prediction [Milk spectral data]

σ

LIFE ODI: Life cycle assessment of tested diets, implementation of the second s

Start 01/10/2015 End 30/09/2019

Deliverable	Deadline	Status, remarks
Report on LCA of 1 st grassland loss and grazed	04/2017	Sept 2017
proportion survey		
Report on LCA of feeding and grazing management	11/2018	First primarily report done
Report on LCA pilot farms	09/2019	Final report together with C4.
Milestones		
Define data to LCA (feeding & grass)	01/2016	ОК
Data obtained to grass LCA	02/2016	09/2016
Data obtained to first feeding trial LCA	11/2016	ОК
Data obtained to LCA pilot farms (together with C4)	11/2017	Year 2015 OK; Year 2016 OK by 09/2017
Data obtained from last grass survey	03/2019	
Data obtained from pilot farm - implementing	08/2019	

Country	Luxemburg	Belgium	Dei	nmark
System	Conventional	Conventional	Organic	Conventional
General data				
Soil, clay %	19	19	5	5
Rainfall, mm annually	865	821	842	842
Precipitation, mm annually	653	530	547	535
Specific data				
Herd, dairy cows n	74	70	169	168
- milk, kg per cow	8 389	8 254	9 199	9 980
Stocking rate, LSU per ha	1,99	1,73	1,26	1,95
Milk, kg per ha farm land	9 519	8 102	6 641	11 103
Croptype, % of farmland				
-Permanent grassland	57%	55%	9%	7%
-Temporary grassland	11%	11%	48%	32%
-Maize	18%	5%	3%	31%
Feedintake-herd, kg DM per cow				
-pasture	2 355	2 956	2 161	550
-grass silage/hay	1 898	2 838	3 358	2 792
-maize silage	2 225	693	925	3 525

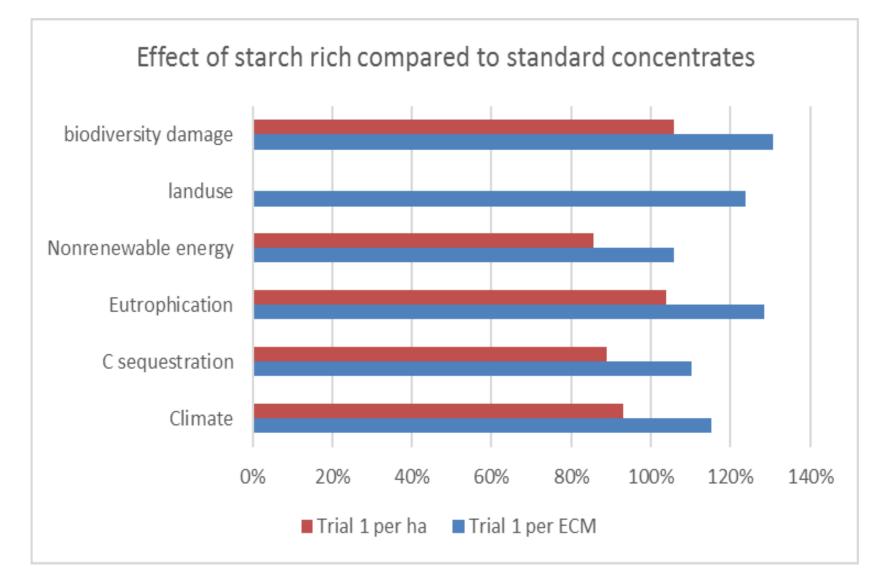
Table 2. Product environmental impact for milk and meat – after allocation

	Luxemburg	Belgium	Dei	nmark
	Conventional	Conventional	Organic	Conventional
Proportion to milk. %	85%	83%	87%	88%
Per kg milk				
GHG, g CO ₂ eq.	1.010	999	933	949
Soil carbon sequestration, g CO ₂ eq.	44	82	38	37
Land use, m ²	1,12	0,94	1,47	1,00
Biodiversity damage index	0,36	0,26	0,12	0,52
Per kg live weight gain				
GHG, g CO ₂ eq.	6.850	6.976	6.174	6.223
Soil carbon sequestration, g CO ₂ eq.	301	569	252	240
Land use, m ²	7,59	6,58	9,75	6,58
Biodiversity damage index	2,41	1,79	0,81	3,39

LCA – grassland

Table 9. Summary – impact of grassland

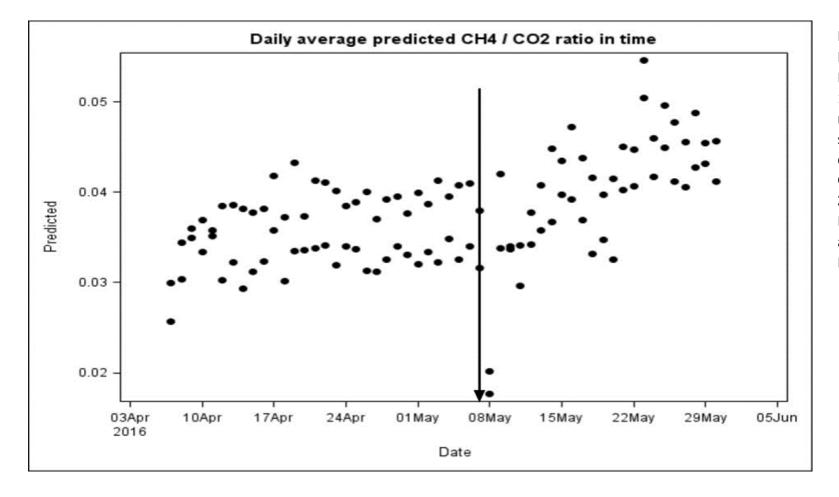
	Luxemburg	Belgium	Der	ımark
	Conventional	Conventional	Organic	Conventional
Land				
Grassland, % of farm	68	66	57	39
Permanent grassland, % of farm	57	55	9	7
Grazed area, % of grassland	55	51	39	18
Production grassland, kg DM per ha	7.144	8.635	7.006	9.421
Herd				
Pasture, % of DMI	28	34	23	6
Grass silage, % of DMI	22	33	36	28
Farm				
Intensity, kg milk per ha	9.514	8.102	6.641	11.103
Fertilizer, kg N per ha	92	136	0	71
On farm produced, % of DMI	85%	96%	89%	85%
Environment – farm area				
N surplus, kg N pr ha	141	132	87	146
GHG, kg CO ₂ eq per ha	10.083	8.993	6.728	10.704
Soil sequestration, kg CO ₂ per ha	569	980	286	551
Environment – product (LCA)				
GHG, g CO ₂ eq per kg milk	1,010	999	933	949
Biodiversity damage index, per kg milk	0,36	0,26	0,12	0,52



• Table 4. Environmental impact due to crop production, transport and processing of four different type of feed , per kg DM

	Climate g CO ₂ eq	C seq. g CO ₂	Eutrophication, g NO ₃ eq.	NRE, MJ	LU, m ²	BD, PDF- index				
	per kg DM									
TMR	433	10,23	28,03	3,22	0,95	0,27				
Concentrate AT1	524	-37,11	29,04	5,98	1,07	0,62				
High starch AT2	552	-47,10	46,07	4,79	1,47	0,86				

DAIRYCLIM LCA – feeding experiment



Complementary action outside LIFE

Enteric methane during transition from indoor to pasture

Marcin Szalanski1, Troels Kristensen2,Gareth Difford1, Peter Løvendahl1 19th EGF Symposium on "Grassland resources for extensive farming systems in marginal lands: major drivers and future scenarios" Grassland Science in Europe, **volume 22**, 652 pages EUR 50 Book available PDF available for free download from November 2017

Complementary action outside LIFE

Intake NE (FE) per cow Herbage growth NE (FE) per ha 20,0 120 18,0 100 16,0 14,0 80 12,0 10,0 60 8,0 40 6,0 4,0 20 2,0 0,0 13-05-2017 4-06-2017 8-06-2017 18-06-2017 29-05-2017 2-06-2017 6-06-2017 23-04-2017 25-04-2017 27-04-2017 29-04-2017 1-05-2017 3-05-2017 5-05-2017 7-05-2017 9-05-2017 11-05-2017 15-05-2017 17-05-2017 19-05-2017 21-05-2017 23-05-2017 25-05-2017 27-05-2017 31-05-2017 10-06-2017 12-06-2017 4-06-2017 16-06-2017 20-06-2017 nr ha 🔶 optag stald 🛛 🗕 græs pr ko

Transition period 2017 - overview

Blue = growth per ha, yellow = intake supplement, green = intake pasture

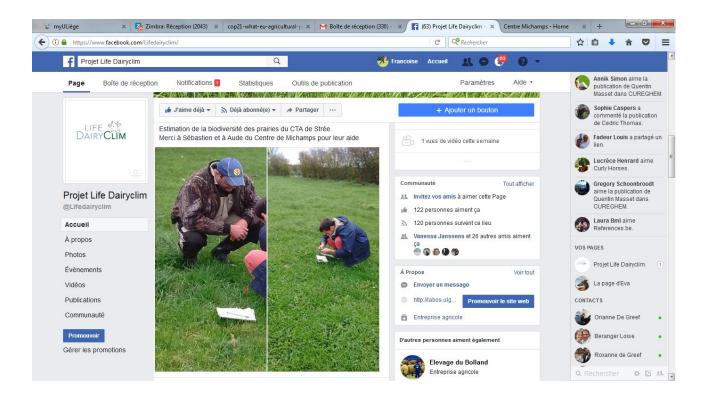
RYCLIM Poster Presentation of CF case farm

https://økodag.dk/landbrug/lille-djernaes

Different actions to disseminate results and increase

awareness :

ULg The **website** is available since 15 December 2015



Different actions to disseminate results and increase awareness :

a page **Facebook** was created and is regularly implemented with outcomes of the projects, events organized and publications in relationship with the project. Some publications reached 611 persons. <u>https://www.facebook.com/pg/Lifedairyclim/</u>

Different actions to disseminate results and increase awareness : **Short movies** were made, the first one presented how methane emissions are measured by the Guardian[®]:

Alimentation-metane-5b-libramont

Il y a 1 année

ecampus - ULiège PR0 + Suivre + Suivre

Different

actions to

disseminate

results and

increase

awareness :

The project was presented at **agricultural events**

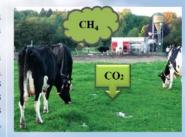
- Agribex (Bruxelles, Belgium) and description of the project in a leaflet entitled "Feed the future": 105.878 visitors

- fair of Libramont (Belgium) 2016: posters explaining the project – leaflets in German and French: 195.177 visitors

- fair of Libramont (Belgium) 2017: posters explaining the project – leaflets in French : 212.173 visitors

- fair of Ettelbruck (Luxembourg) 2016: 37.128 visitors
- fair of Ettelbruck (Luxembourg) 2017: 37.246 visitors
- fair of Battice (Belgium) : September 2017: poster and leaflets presenting the outcomes of the project: around 22.000 visitors
- Annual meeting of the dairy department in Convis site: March 2016 (50 farmers)

- Annual meeting of the dairy department in Convis site: March 2017 (150 farmers) During these 2 events, presentation of the project was made.


Fair of Ettelbruck , 2017

Fair of Libramont (Belgium) 2016: posters

Contexte :

Les vaches ont la capacité de transformer les végétaux qu'elles mangent en protéines utiles pour l'homme: le lait et la viande. Au cours de la digestion, elles produisent du méthane, un gaz à effet de serre. Le but du projet LIFE-Dairyclim est de de diminuer les émissions de méthane des vaches laitières en associant différents aliments dans la ration et en promouvant l'utilisation des prairies qui captent et stockent le gaz carbonique, un autre gaz à effet de serre.

Concrètement, pendant ce projet:

- Différentes rations vont être testées : la production de lait et de méthane vont être enregistrées. Différentes méthodes seront utilisées. Par exemple, la production de méthane expiré par les vaches lors de l'éructation est mesurée grâce au Guardian® et comparée à celle estimée par l'analyse des spectres infra-rouge du lait (CRA-W et <u>Convis</u>). Les meilleures rations seront ensuite utilisées dans des fermes pilotes.
- Des techniques de pâturage de précision seront employées pour améliorer l'efficience de l'utilisation de l'herbe.
- Des enquêtes préciseront la place de la prairie dans l'alimentation des vaches et sa contribution dans la lutte contre les gaz à effet de serre.

Les tests alimentaires ont lieu à la Ferme expérimentale du Sart <u>Tilman</u> (Université de Liège) ainsi que dans des fermes pilotes. Dumoulin <u>s.a., Convis</u> (Luxembourg) et l'Université d'Aarhus (Danemark) participent au projet.

Different actions to disseminate results and

increase

awareness :

Scientific meetings

- Poster presented at Terra Innovation Fair (Gembloux 20/5/2016)
- Oral presentation at the conference "Elevage Bovin et Gaz à effet de serre" on 13/9/2016 in Gembloux (Belgium) <u>http://www.gembloux.ulg.ac.be/wp-</u> <u>content/uploads/2016/09/Pr%C3%A9sentation-Gembloux-d%C3%A9f-13 9 2016-</u> <u>%C3%A0-diffuser.pdf</u>
- Participation to EGF 2016 : posters presentation presentation of the project and presentation of first results of the survey in Wallonia: 300 participants
- Participation to meeting of the "project Methagene" 60 participants
- Participation at EGF 2017: 300 participants
- Participation to EmiLI 2017

Different

actions to

disseminate

results and

awareness :

increase

E.1: Dissemination

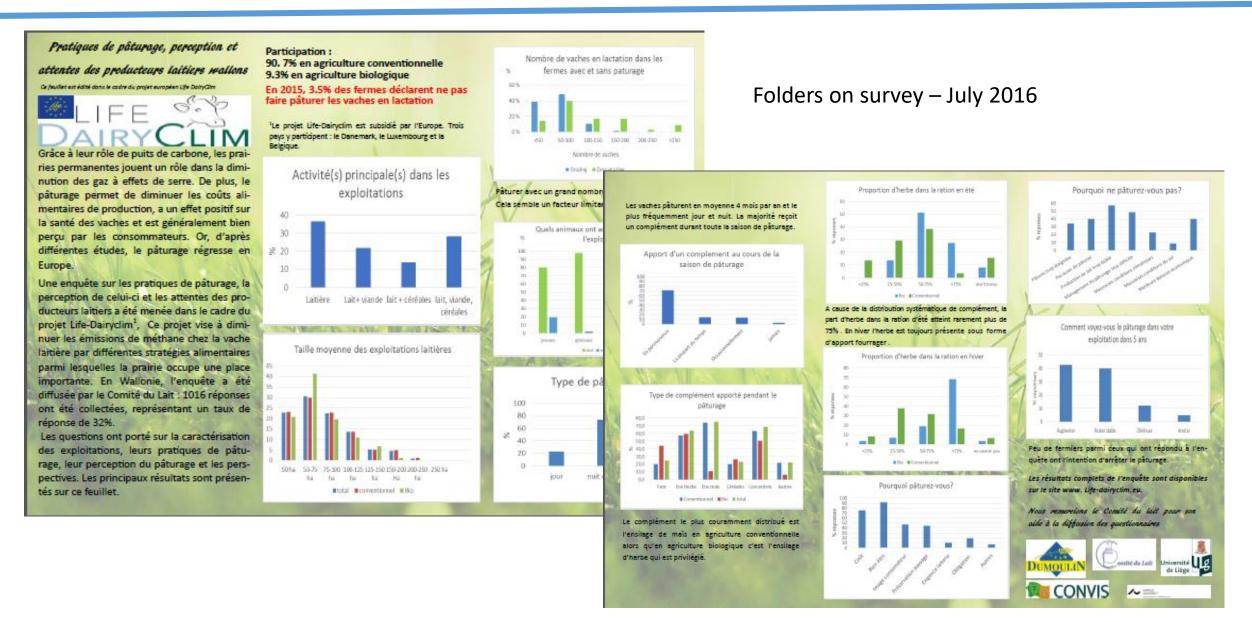
Workshops

- Sustainability indicators. Workshop organized by Arla. November 2016.
- Holistic grazing. Workshop organized by dairy farmers. Oktober 2016.
- "Quoi de neuf au pâturage": workshop about importance of grazing in Walloon dairy farms : organization of the event in coordination with the Walloon Agriculture Ministry – several presentations in relationship with grazing and the project: 200 participants
- Journée Légumineuse: workshop about grazing topics for several schools and high schools in Agriculture from Wallonia: 150 participants
- Journée Fermes Ouvertes : 500 visitors

Different actions to disseminate

results and

increase


awareness :

Newspapers, media

- Articles in newspapers:15e Jour (University of Liège) and "La Meuse", Le Sillon Belge (20.000 subscribers – estimation of the total audience : 80.000 persons), De Lëtzebuerger Ziichter
- Radio program « Première » Questions-clé : « Faut-il mettre les vaches au régime pour limiter les gaz à effet de serre ? » 14/4/2016
- Radio program « La minute de l'Europe » 1/6/2017 : presentation of the project
- Folders on survey: were edited in French and German. Dissemination during the fair of Libramont, on the website and through collaboration with the industrial partner
 Dumoulin and the Comité du lait: 150 edited by Dumoulin – 50 by ULg – 100 by Convis
- Folders were edited in July 2017: 150 edited by Dumoulin 50 by ULg- 100 by Convis
- Folders were edited in September 2017: 100 edited by Dumoulin

Folders edited in July 2017

Different actions to

disseminate

results and

increase

Networking

- Collaboration and networking with the Life-project Carbon dairy and Life Beef Carbon has been initiated with share of files.
- Project Methagene
- **awareness :** Contacts with SERIDA (Spain) Life Climatree Life Forage4climate
 - JRC was contacted-

Contacts with JRC

LIFE CHAIRYCLIM

😻 myULiège	× 🔁 Zimbra: JR	C Contact (Enlarge 🗙 cop21-wha	-eu-agricultural-polic	🗙 🛛 M Boîte	e de réception (329)	- less × +						- 0	×
(i) 🖍 https://mail.	.ulg.ac.be/#44					G	Q Rechercher		☆	Ê	↓ 1	r V	Ξ
CHU de Liège Université de Liège							🖂 🔻 Re	chercher		Q	flessi	re@ulg.a	c.be
Mail Contacts	Calendrier Tâches	Préférences 🛛 🛏 Rechercher	X TR: Réunion I	Lif 🛛 JRC	Contact (En 🗵								ى
Fermer Répondre	Rép. à tous Faire suivre	Archiver Supprimer Span		Actions 🔻									
Expéditeur : U		gration actions): Collabo	ation and netw	vorking							29 M	ars 2017 1	.6:35
Dear Françoise Les Thank you for your Your message has b Details of your re	r submission. Deen sent to the rele	evant JRC service.											
	Noted in further cor	cespondance:											
E-mail: flessire@u Phone : +324776229	y of Liège - Faculty alg.ac.be 946	of Veterinary Medicine											
Topic : Enlargemen Object: Collaborat	nt & integration acti tion and networking	ions											
Dear sir or Mada													
grazing and on per	manent grassland pre	ecrease methane emissions eservation. on and networking with ot		-	-			cegies. We hav	ve a spec:	ial i	locus	on	
		rinary Medicine											

Publishers.

Publications

Different Kristensen, T., Mogensen, L. Hermansen, J.E. 2016. Climate smart cattle farming – actions to management and systems aspects. *Invited paper. Methagene Cost – Padova* October 2016. disseminate Kristensen, T. Klimabelastning fra økologiske kvægbrug – fodring og produktionsstrategier I stalden. Invited paper. Kvægkongres, februar 2017. results and Lund, P., Kristensen, T. 2017. Kvæg & klima. Momentum, 1, 35-38. increase Monitoring of methane during transition period – one dairy farm. April –Juni 2016. Paper prepared for EGF 2017. awareness : Lessire, F., Bernard, M., Lioy, R., Reding, R., Kristensen, T., Reuter, W., & Elias, E. (2016). Grazing practices, perception and expectations of Walloon dairy farmers. In The multiple roles of grassland in the European bioeconomy (pp. 125-127). Wageningen, The Netherlands, Wageningen Academic Publishers. Lessire, F., Bernard M., Reding R., Lioy R., Kristensen, T., Reuter W., Elias E., Dufrasne I. (2016) Life-Dairyclim, European project aiming to mitigate methane emissions and carbon footprint of dairy cows In The multiple roles of grassland in the European

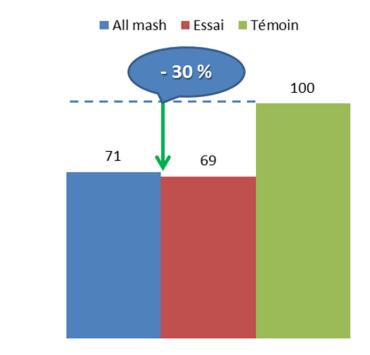
bioeconomy (pp 805-807). Wageningen, The Netherlands: Wageningen Academic

Different actions to disseminate results and increase

awareness :

Policymakers contact

- Effektivitets- og klimaværktøj til landbruget. Several meeting organized by Ministry of Energy, Utilities and Climate. Okotober 2016 January 2017.
- Klimaregnskab. Møde klimarådet. February 2017.
- Contacts between the Belgian partner and the Walloon Ministry of Agriculture were initiated leading to the organization in partnership of a workshop about grazing practices and to the dissemination of the main finding of the survey (Walloon data) on the website of the Socopro, organism depending on the Walloon Ministry of Agriculture and dedicated to the dairy sector.
- Convis has got the opportunity to present the project to the Luxembourg ministry of Agriculture during the annual meeting held at the Convis site.



Complementary action :

Dumoulin plays an important role in the dissemination of the outcomes of the project and the promotion of the project and is preparing the "After-life" of the project:

research on lowering methane emissions in ruminants

> reduction of methane emissions by 30% thanks to an adapted feeding strategy of Belgian White Blue double muscled bulls,

Méthane en % du témoin

Les émissions de méthane par des taureaux Blanc-Bleu Belge culard durant les phases de croissance et de finition sont fortement influencées par les régimes alimentaires

<u>M Mathot</u>^a, N Demande^a, D Deswysen^b, S Vermaut^c, D Stilmant^a

<u>M Mathot</u>^a, N Demande^a, D Deswysen^b, S Vermaut^c, D Stilmant^a

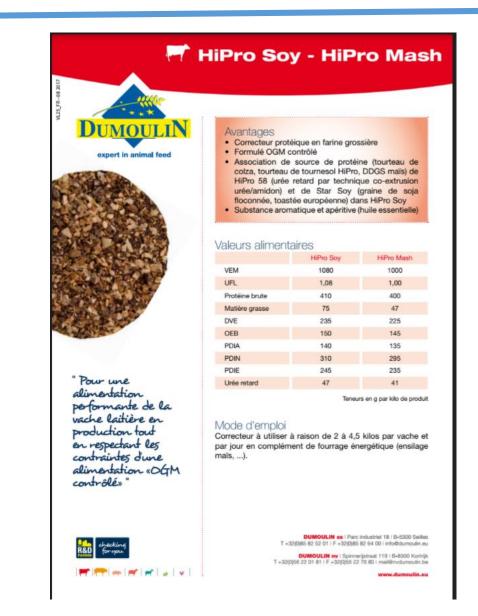
Avantages :

- > Environnement:
 - Local : matières premières 100% EU → bilan CO2
 - Sociétal :

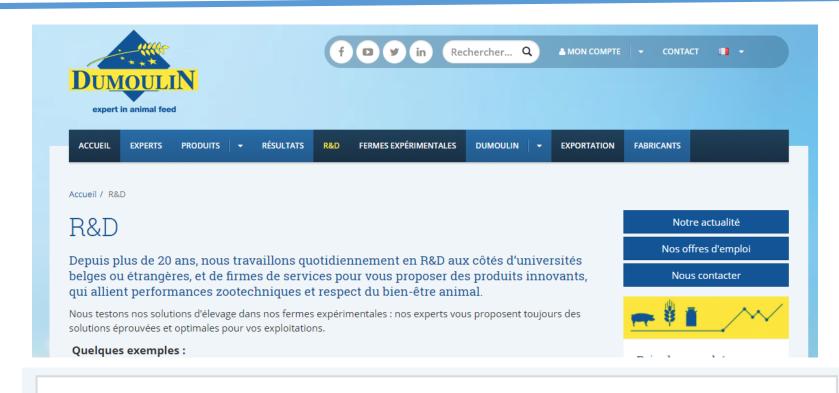
> 80% des MP sont des sous-produits et/ou des fourrages valorisables uniquement par le ruminant

- ARM : Alimentation Réductrice de Méthane
- Economie circulaire :
 - production animale $\leftarrow \rightarrow$ productions végétales
- Santé consommateurs :
 - Teneurs + profil en oméga3 de la viande
- > Filière :
 - Performances technico-économiques identiques // gamme intensive (coût du kg carcasse =)
 - Qualités de la viande identiques (tendreté, couleur, ...)
 - Revalorisation de l'image de la viande rouge

the first step for Dumoulin was to create a range of compound feeds for the growth and finishing phases of young beef cattle, mainly bulls. This range has been launched in summer 2016, and has been called EUROCLIM[®]



Recently, once the winter trials at CTA were analysed, the company decided to extend the EUROCLIM range to the dairy cows by adding two extruded compound feeds, Nutex Sweet and Nutex Elit, both rich in polyunsaturated fatty acids from linseed and canola seed



Two more products are in progress, based on unsaturated fat coming from European Soybeans, and rich in dietary proteins, so called "protein concentrates", which will help the farmer to get the nitrogen input and the nitrogen needs in better balance (nitrogen efficiency) which will result in less nitrogen emissions, as nitrous oxide (GHG) and ammonia to the environment. These products will be called Hipro Soy and Hipro Mash.

Diminution des émanations de méthane des bovins :

Une réduction de 15% par litre de lait et 30% par kg de viande bovine produite, c'est possible !

Pour preuve, Dumoulin est partenaire du projet Life Dairyclim qui vise à démontrer l'efficacité d'une alimentation spécifique riche en matières grasses sur la réduction de la production de méthane par la vache laitière. Plus d'informations: www.labos.ulg.ac.be/dairyclim/ Retrouvez nos produits parmi la gamme EUROCLIM présente sur notre site internet dans la rubrique Produits en Bovin-lait et en Bovin-viande

DAIRYCLIM Envisaged progresses till the next report

C1:

✓ revised report available on the website of Life Dairyclim - sent to the Climate Cell in Belgium.

C2:

✓ the report on best feeding strategies at grazing Y2 is quite ended => C2: ended

C3:

 \checkmark Third grazing period will be completed -reports Y2 and Y3

C4:

- ✓ Report about characterization of the pilot farms
- ✓ The implementation of best feeding practices
- \checkmark . Open days in pilot farms will be held.

DAIRYCLIM Envisaged progresses till the next report

D1:

✓ Report on LCA on feeding trials Y2✓ LCA characterisation of pilot farms

D2:

 Monitoring of indicators will be made and the table of completed evaluation will be annexed in the Report.

E: Dissemination

- ✓ EGF 2018: participation planned.
- ✓ Communication through the Website Facebook : improved
- ✓A third short movie will be produced
- ✓ Workshop is planned on 12/12/2017 at the CTA of Strée
- ✓ Participation to agricultural events

F: Annual meeting in Denmark in 2018

Alimentation durable de la vache laitière Allier aspects économiques et environnementaux

Strée, mardi 12 décembre, 13h30

Alimentation durable de la vache laitière : premiers résultats du projet Life

Françoise LESSIRE, Service de Nutrition, Faculté de Médecine Vétérinaire, ULg Eric ELIAS, Responsable Nutrition Ruminants, Société Dumoulin

Intercultures fourragères : place dans la rotation, place dans la ration François GROGNA, Conseller technique polyculture/élevage, Biovalonie Questions – réponses, échanges d'Idées, animé par Marie MANGUETE. Attaché BYU/DRABIE-Becharche et Divelopment Hur

Informations

AARHUS

CLIM CONVIS

Marie MANGUETTE : 085/ 273 473

Marie.manguette@spw.wallonie.

Mélanie SEVRIN : 085/ 274 968

roiet.formation@cta-stree.be

Wallonie agriculture

Accueil

Dairyclim

Lieu:

LIÈGE

Centre des Technologie

Rue de la Charmille 16

4577 STREE (MODAVE)

Agronomiques - CTA

Isabelle DUFRASNE, Directrice, CTA